Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Component Analysis using Gaussian Mixture Models

This paper discusses a method for performing independent component analysis exploiting Gaussian mixture models (GMMs). Previously most techniques that combine these methods have used GMMs to model the source signals. This paper considers a parsimonious method for modelling the observed signals. The GMM is fitted to the observed data using a modified version of the expectation maximisation algor...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

Some experiments on independent component analysis of non-Gaussian processes

This paper reports on numerical experiments on the ‘independent component analysis’ (ICA) of some nonGaussian stochastic processes. It is found that the orthonormal basis discovered by ICA are strikingly close to wavelet basis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems

سال: 2017

ISSN: 2162-237X,2162-2388

DOI: 10.1109/tnnls.2015.2505086