Monitoring Nonlinear and Non-Gaussian Processes Using Gaussian Mixture Model-Based Weighted Kernel Independent Component Analysis
نویسندگان
چکیده
منابع مشابه
Independent Component Analysis using Gaussian Mixture Models
This paper discusses a method for performing independent component analysis exploiting Gaussian mixture models (GMMs). Previously most techniques that combine these methods have used GMMs to model the source signals. This paper considers a parsimonious method for modelling the observed signals. The GMM is fitted to the observed data using a modified version of the expectation maximisation algor...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملSome experiments on independent component analysis of non-Gaussian processes
This paper reports on numerical experiments on the ‘independent component analysis’ (ICA) of some nonGaussian stochastic processes. It is found that the orthonormal basis discovered by ICA are strikingly close to wavelet basis.
متن کاملFault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis
Article history: Available online 20 June 2013
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2017
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2015.2505086